从我开始学习python的时候,我就开始自己总结一个python小技巧的集合。后来当我什么时候在Stack Overflow
或者在某个开源软件里看到一段很酷代码的时候,我就很惊讶:原来还能这么做!,当时我会努力的自己尝试一下这段代码,直到我懂了它的整体思路以后,我就把这段代码加到我的集合里。这篇博客其实就是这个集合整理后一部分的公开亮相。如果你已经是个python大牛,那么基本上你应该知道这里面的大多数用法了,但我想你应该也能发现一些你不知道的新技巧。而如果你之前是一个c,c++,java的程序员,同时在学习python,或者干脆就是一个刚刚学习编程的新手,那么你应该会看到很多特别有用能让你感到惊奇的实用技巧,就像我当初一样。每一个技巧和语言用法都会在一个个实例中展示给大家,也不需要有其他的说明。我已经尽力把每个例子弄的通俗易懂,但是因为读者对python的熟悉程度不同,仍然可能难免有一些晦涩的地方。所以如果这些例子本身无法让你读懂,至少这个例子的标题在你后面去google搜索的时候会帮到你。
整个集合大概是按照难易程度排序,简单常见的在前面,比较少见的在最后。
1.1 拆箱
>>> a, b, c = 1, 2, 3>>> a, b, c(1, 2, 3)>>> a, b, c = [1, 2, 3]>>> a, b, c(1, 2, 3)>>> a, b, c = (2 * i + 1 for i in range(3))>>> a, b, c(1, 3, 5)>>> a, (b, c), d = [1, (2, 3), 4]>>> a1>>> b2>>> c3>>> d4
1.2 拆箱变量交换
1.3 扩展拆箱(只兼容python3)
1.4 负数索引
1.5 切割列表
1.6 负数索引切割列表
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]>>> a[-4:-2][7, 8]
1.7指定步长切割列表
1.8 负数步长切割列表
1.9 列表切割赋值
>>> a = [1, 2, 3, 4, 5]>>> a[2:3] = [0, 0]>>> a[1, 2, 0, 0, 4, 5]>>> a[1:1] = [8, 9]>>> a[1, 8, 9, 2, 0, 0, 4, 5]>>> a[1:-1] = []>>> a[1, 5]
1.10 命名列表切割方式
>>> a = [0, 1, 2, 3, 4, 5]>>> LASTTHREE = slice(-3, None)>>> LASTTHREEslice(-3, None, None)>>> a[LASTTHREE][3, 4, 5]
1.11 列表以及迭代器的压缩和解压缩
>>> a = [1, 2, 3]>>> b = ['a', 'b', 'c']>>> z = zip(a, b)>>> z[(1, 'a'), (2, 'b'), (3, 'c')]>>> zip(*z)[(1, 2, 3), ('a', 'b', 'c')]
1.12 列表相邻元素压缩器
1.13 在列表中用压缩器和迭代器滑动取值窗口
>>> def n_grams(a, n):... z = [iter(a[i:]) for i in range(n)]... return zip(*z)...>>> a = [1, 2, 3, 4, 5, 6]>>> n_grams(a, 3)[(1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6)]>>> n_grams(a, 2)[(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)]>>> n_grams(a, 4)[(1, 2, 3, 4), (2, 3, 4, 5), (3, 4, 5, 6)]
1.14 用压缩器反转字典
>>> m = {'a': 1, 'b': 2, 'c': 3, 'd': 4}>>> m.items()[('a', 1), ('c', 3), ('b', 2), ('d', 4)]>>> zip(m.values(), m.keys())[(1, 'a'), (3, 'c'), (2, 'b'), (4, 'd')]>>> mi = dict(zip(m.values(), m.keys()))>>> mi{1: 'a', 2: 'b', 3: 'c', 4: 'd'}
1.15 列表展开
>>> a = [[1, 2], [3, 4], [5, 6]]>>> list(itertools.chain.from_iterable(a))[1, 2, 3, 4, 5, 6] >>> sum(a, [])[1, 2, 3, 4, 5, 6] >>> [x for l in a for x in l][1, 2, 3, 4, 5, 6] >>> a = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]>>> [x for l1 in a for l2 in l1 for x in l2][1, 2, 3, 4, 5, 6, 7, 8] >>> a = [1, 2, [3, 4], [[5, 6], [7, 8]]]>>> flatten = lambda x: [y for l in x for y in flatten(l)] if type(x) is list else [x]>>> flatten(a)[1, 2, 3, 4, 5, 6, 7, 8]
1.16 生成器表达式
1.17 字典推导
>>> m = {x: x ** 2 for x in range(5)}>>> m{0: 0, 1: 1, 2: 4, 3: 9, 4: 16} >>> m = {x: 'A' + str(x) for x in range(10)}>>> m{0: 'A0', 1: 'A1', 2: 'A2', 3: 'A3', 4: 'A4', 5: 'A5', 6: 'A6', 7: 'A7', 8: 'A8', 9: 'A9'}
1.18 用字典推导反转字典
>>> m = {'a': 1, 'b': 2, 'c': 3, 'd': 4}>>> m{'d': 4, 'a': 1, 'b': 2, 'c': 3}>>> {v: k for k, v in m.items()}{1: 'a', 2: 'b', 3: 'c', 4: 'd'}
1.19 命名元组
>>> Point = collections.namedtuple('Point', ['x', 'y'])>>> p = Point(x=1.0, y=2.0)>>> pPoint(x=1.0, y=2.0)>>> p.x1.0>>> p.y2.0
1.20 继承命名元组
>>> class Point(collections.namedtuple('PointBase', ['x', 'y'])):... __slots__ = ()... def __add__(self, other):... return Point(x=self.x + other.x, y=self.y + other.y)...>>> p = Point(x=1.0, y=2.0)>>> q = Point(x=2.0, y=3.0)>>> p + qPoint(x=3.0, y=5.0)
1.21 操作集合
1.22 操作多重集合
1.23 统计在可迭代器中最常出现的元素
1.24 两端都可操作的队列
1.25 有最大长度的双端队列
1.26 可排序词典
1.27 默认词典
1.28 默认字典的简单树状表达
1.29 对象到唯一计数的映射
1.30 最大和最小的几个列表元素
1.31 两个列表的笛卡尔积
1.32 列表组合和列表元素替代组合
1.33 列表元素排列组合
1.34 可链接迭代器
1.35 根据文件指定列类聚